

Congruence: A sequence of transformations (Is SAS enough?) ___(2a)

transparen cies, dry Two shapes are congruent if there is a sequence of transformations (1 or more) that map one shape to the other. Determine a sequence of transformations that maps $\triangle A'B'C'$ back to $\triangle ABC$. Write a description and justification for each step in the sequence of transformations.

erase markers, eraser, compass, straightedg е

Cont. (2b)	Congruence: A sequence of transformations (remix)					
	To verify that a s	sequence (comp	osition) of rigid t	ransformations will	map $\triangle ABC$ to	$\triangle A'B'C'$ by we will work
	backwards.					
	Map point	_ to by		_ triangle A'B'C'		
	so that coinc	Ides with			A'	$\mathcal{A}^{B'}$
	Your constructio	n should result i	n a diagram that	looks like the one l	below. Next, m	ap point to
	by					50 that
	Your constructio	B	n a diagram that	looks like the one l	below. Finally,	map to by
		triangle A'"	B'''C'''		so that	coincides with We
	know that both poin	ts will coincide b	ecause (1) angl	e maps to	angle	under reflection which
	means that ray	will lie on ra	y, (2) po	ints and	_ lie on the sam	e ray and are the same
	distance from point	A so point	_ maps to point _			
			B		> B'''	
	So, what does th	So, what does this mean for us? Well, if we need to show that 2 triangles are congruent, do we have to show				
	that all three pairs of corresponding sides AND all three pairs of corresponding angles are congruent? In					
	fact, this process sh	nows us that all v	we need is	_ pairs of	and	_ pair of
		The pair o	of	must be betw	veen the pairs o	f congruent
	To abbreviate this method of proving triangles are congruent, we write SAS≅ which is short					
	for saying S	A	S	≅		<u> </u>

(3)	☐ Given: ∠L Do △LMN Provide evic	.MN $\cong \angle$ LNO, $\overline{MN} \cong \overline{OM}$ I and \triangle LOM meet the SAS≅ criteria? dence.	
	S A S The	because because because angle is/is not (circle one) between the sides.	
(4)	☐ Given: \overline{AB} (Hint: Parallel line Do △ABD a Provide evid	$F \overline{CD}, \overline{AB} \cong \overline{CD}$ es give us pairs of congruent angles. Are there any here?) and $\triangle CDB$ meet the SAS \cong criteria? dence.	A >/ B D C
	S	because	

S_____ because_

The angle is/is not (circle one) between the sides.

 $(5) Given: \overline{KM} \text{ and } \overline{JN} \text{ bisect each other.}$ Prove that $△JKL \cong △NML$ or explain why you cannot. KL
M

I know that	because	

 \Box Given: \overline{AE} bisects $\angle BCD$, $\overline{BC} \cong \overline{DC}$.

(6)

Prove that $\triangle CAB \cong \triangle CAD$ or explain why you cannot.

4.1L

because

I know that	because

(8) Exit Ticket

 $\Box \text{ Given: } \angle 1 \cong \angle 2, \ \overline{BC} \cong \overline{DC}$

Prove that $\triangle ABC \cong \triangle ADC$ or explain why you cannot.

(9) Homework

Q

I know that	because

 $\Box^{(2)} \text{ GIVEN } \blacktriangleright \overline{PT} \cong \overline{RT}, \ \overline{QT} \cong \overline{ST}$ $\mathsf{PROVE} \triangleright \bigtriangleup PQT \cong \bigtriangleup RST$

I know that	because

 \square (3) Given: 1) BD bisects ∠CDA 2) $\overline{CD} \cong \overline{DA}$ Prove: ΔBCD \cong ΔBAD

I know that	because	7.